Toward reliable ensemble Kalman filter estimates of CO2fluxes
نویسندگان
چکیده
منابع مشابه
Toward reliable ensemble Kalman filter estimates of CO2 fluxes
[1] The use of ensemble filters for estimating sources and sinks of carbon dioxide (CO2) is becoming increasingly common, because they provide a relatively computationally efficient framework for assimilating high-density observations of CO2. Their applicability for estimating fluxes at high-resolutions and the equivalence of their estimates to those from more traditional “batch” inversion meth...
متن کاملResampling the ensemble Kalman filter
Ensemble Kalman filters (EnKF) based on a small ensemble tend to provide collapse of the ensemble over time. It is shown that this collapse is caused by positive coupling of the ensemble members due to use of one common estimate of the Kalman gain for the update of all ensemble members at each time step. This coupling can be avoided by resampling the Kalman gain from its sampling distribution i...
متن کاملEfficient Implementation of the Ensemble Kalman Filter
We present several methods for the efficient implementation of the Ensemble Kalman Filter (EnKF) of Evensen. It is shown that the EnKF can be implemented without access to the observation matrix, and only an observation function is needed; this greatly simplifies software design. New implementations of the EnKF formulas are proposed, with linear computational complexity in the number of data po...
متن کامل4-D-Var or ensemble Kalman filter?
We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effec...
متن کاملThe Hybrid Local Ensemble Transform Kalman Filter
Hybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an EnKF [1][2][4][5][8], we take the opposite perspective of augmenting an operational EnKF with information from a simple 3D-Variational (3D-Var) method [7]....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research: Atmospheres
سال: 2012
ISSN: 0148-0227
DOI: 10.1029/2012jd018176